H-NMR-UNTERSUCHUNGEN ZUR STICKSTOFFINVERSION IN SELENOOXIMEN (N-ARYLSELENYLIMINEN) UND SELENENAMIDEN (N-ARYLSELENYLAMINEN)

Claus O. Meese, Wolfgang Walter [†] und Hartwig Schmidt

[†]Institut für Organische Chemie und Biochemie der Universität Hamburg, D-2000

Hamburg 13. Martin-Luther-King-Platz 6, W.-Germany

(Received in Germany 1 July 1976; received in UK for publication 26 July 1976)

Als Mechanismus der Isomerisierung an der CN-Doppelbindung von Thiooximen und ihren Derivaten 1 ist ein linearer (I) und ein cyclischer (II) Übergangszustand zu deskutieren. 1,2 (Schema 1). Wenn planare Stickstoffinversion 3 den Isomerisierungsmechanismus bei 1 bestimmt, so sollten -auch noch bei weitgehender Variation der Reste R und R -Selenoe oxime und ihre Derivate 2 wegen der vergleichbaren Elektronegativitäten des Schwefels und des Selens ähnliche ΔG^{\dagger} -Werte wie die entsprechenden Verbindungen 1 besitzen.

Wir nehmen nun eine kürzlich erschienene Publikation von Davis und Kluger⁴, in der zwei Vertreter der neuen Selenooyime <u>2</u> beschrieben wurden, zum Anlaß, über unsere Ergebenisse über den Mechanismus und die Isomerisierungsbarrieren von Verbindungen des Typs <u>1</u> und <u>2</u> zu berichten. Die ¹H-NMR-spektroskopische Ermittlung der Geschwindigkeitse konstanten k der innermolekularen Bewegungsprozesse erfolgte (A) nach der Näherungsemethode k_c=2.22·AV^{6,7}, (B) durch Linienformanalyse im Bereich der Koaleszenz⁸ und (C) durch direkte Äquilibrierung der konfigurationsrein kristallisierenden Derivate <u>2e</u> (im Kristall 100% E-Form) und <u>2f</u> (im Kristall 100% Z-Form)⁹. Die Temperaturspektren von <u>1a</u> und <u>2a</u> enthüllen zwei voneinander unabhängige Bewegungsprozesse: 1) Rotation des aus sterischen Gründen im Grundzustand in die Iminebene gedrehten Restes Ar² um die Iminokohlenstoff-Arylbindung bei senkrecht zur CN-Doppelbindung orientiertem Rest Ar¹.

2) E/Z-Topomerisierung an der CN-Doppelbindung mit deutlich höherer Barriere für das Selenooxim 2a (Schema 2, vgl. auch⁴):

$$\frac{\text{Ar}^2 - \text{Rotation}(\text{in CDCl}_3, \text{bei } 60 \text{ MHz}):}{1\underline{a}: \quad (2, 6 - \text{CH}_3, \text{Ar}^2) = 40, 5 \text{ Hz}, \text{ $T_c} = 30^{\circ}\text{C}, \quad \Delta G_c^{\ddagger} = 62, 8 \text{ kJ/mol}}$$

$$\frac{2\underline{a}: \quad (2, 6 - \text{CH}_3, \text{Ar}^2) = 38 \text{ Hz}, \text{ $T_c} = 29^{\circ}\text{C}. \quad \Delta G_c^{\ddagger} = 62, 8 \text{ kJ/mol}}{6 - 62, 8 \text{ kJ/mol}}$$

$$\frac{E/Z - \text{Topomerisierung}(\text{in CCl}_4):}{1\underline{a}: \quad (4 - \text{CH}_3 - \text{Protonen}, 100 \text{ MHz}) = 6 \text{ Hz}, \text{ $T_c} = 44^{\circ}\text{C}}$$

$$\Delta G_c^{\ddagger} = 70, 9 \text{ kJ/mol}}$$

$$\frac{2\underline{a}: \quad (4 - \text{CH}_3 - \text{Protonen}, 100 \text{ MHz}) = 8 \text{ Hz}, \text{ $T_c} = 66^{\circ}\text{C}}{6 - 62}$$

$$\frac{\Delta G_c^{\ddagger} = 75, 2 \text{ kJ/mol}}{6 - 62, 8 \text{ kJ/mol}}$$

$$\frac{\Delta G_c^{\ddagger} = 75, 2 \text{ kJ/mol}}{6 - 62, 8 \text{ kJ/mol}}$$

$$\frac{\Delta G_c^{\ddagger} = 75, 2 \text{ kJ/mol}}{6 - 62, 8 \text{ kJ/mol}}$$

Auch die Barrieren der E/Z-Isomerisierung der Selenooxime $\underline{2b}$ bis $\underline{2e}$ (mit Ausnahme von $\underline{2f}$, Tabelle 1, 2) sind unter gleichen Bedingungen (Temperatur, Lösungsmittel, Meßmethode) deutlich gegenüber $\underline{1b}$ bis $\underline{1e}$ erhöht. Die ΔG^{\ddagger} -Werte (in kJ/mol) betragen dort: $\underline{1b}$:72, $3(53^{\circ}\text{C}, \text{CDCl}_3, \text{A})^{5b}$, $\underline{1c}$:63, 5 Z \rightarrow E, 70, 2 E \rightarrow Z ($20^{\circ}\text{C}, \text{CDCl}_3$ +Phenol, A) 5c , $\underline{1e}$:68, 3 E \rightarrow Z, 68, 8 Z \rightarrow E($49^{\circ}\text{C}, \text{CCl}_4$, A) 5a und 70, 7 E \rightarrow Z, 71, 5 Z \rightarrow E($61^{\circ}\text{C}, \text{C}_6$ H $_5$ NO $_2$, A) 5a , $\underline{1f}$:75, 6 E \rightarrow Z, 76, 2 Z \rightarrow E($70^{\circ}\text{C}, \text{C}_6$ H $_5$ NO $_2$, B) 5c und 76, 5 E \rightarrow Z, 76, 7 Z \rightarrow E($-21^{\circ}\text{C}, \text{CDCl}_3$, C) 5c Diese Messungen sprechen dafür, daß unabhängig von den Substituenten R 1 , R 2 alle hier untersuchten Thio— und Selenooxime gleichermaßen über den Mechanismus der planaren Stickstoffinversion isomerisieren. Dabei bewirkt der Schwefelsubstituent am lminostick= stoffatom von $\underline{1}$ eine wirkungsvollere (p-d) $\overline{1}$ —Konjugation im linearen Übergangszustand als der Selenrest in $\underline{2}$ (s. auch $\underline{1}$, 4).

Zwei weitere Ergebnisse belegen, daß der cyclische Übergangszustand (II) bei der Isomerisierung von 1 und 2 keine Rolle spielt: Die ΔG_c^{\dagger} -Werte der in ortho-Stellung unsubstituierten Diarylketimine 1g (\sim 77 kJ/mol) und 2g (\sim 86 kJ/mol) sind höher als diejenigen für 1a und 2a (1g, 2g: R = R = 4-CH $_3$ C $_6$ H $_4$, R = C $_6$ H $_5$ und 4-NO $_4$ C $_6$ H $_4$ $_4$. Für eine Stabilisierung des Übergangszustandes nach (II) wäre der umgekehrte Verlauf zu erwarten. Auch die Topomerisierungsbarrieren bei den N-substituierten Aziridinen 3 und 4 sind vergleichbar; dabei verläuft – offensichtlich aus sterischen Gründen 3-bei dem Selenenamid 4 die pyramidale Stickstoffinversion etwas rascher (Schema 3, d-NMR-Messungen nach A in CDCl 3 bei 60 MHz, $J_{AB} \sim 0$ Hz):

Tabelle 1. D-NMR-Messungen (nach A) zur Isomerisierung an der CN-Doppelbindung von 2b bis 2f (60 MHz).

				~1		
T _c o _C ++) AG kJ/mol +++)	73.4 ^J 73.7 ^j	65.5 ^k (71.6 ^k)	68.7 ^k (72.1 ^k)	70.8 j (72.3 j) 72.5 j (73.4 j)	75.4 ^j (75.8 ^j) 75.4 ^j (75.7 ^j)	
	62 ^e 57 ^f	28 ^e	49 ^e	61 ^g 70 ^h	71 ⁱ 74, 5 ^h	
$\Delta V \text{ Hz}^{+)}$	11 ^a 6.5 ^b	12 ^c (92)	21.5 ^a (78)	26 ^d (63) 28,5 ^d (58)	11 ^b (47) 14.5 ^b (48)	
Z I	q 2	<u>2c</u>	PZ	<u>2e</u>	<u>2f</u>	

+) Beobachtete Signale, a)O-CH2, b)C-CH3,

- c)O-CH₃, d)S-CH₂. ++) L&sungsmittel, e)CDCl₃, f)C₆D₆, g)CCl₄,
- h)C₆H₅NO₂, i)1.2-Cl₂C₆H₄. +++) Der höhere ΔG⁺_c-Wert für die Rück = reaktion ist in Klammern gesetzt. j) ± 0.8 kJ/mol , i) ± 1.2 kJ/mol
- aus der

Tabelle 2. ΔG_T^{\bullet} -Werte der Isomerisierung an der CN-Doppel=bindung der Selenooximderivate $\frac{2e}{2}$ und $\frac{2f}{2}$ (bestimmt nach B und C)^{a)}

					
∆G _T kJ/mol	71.3 (Z→E) ^e	72.1 (Z→E) ^f	76.3 (Z→E) ^f	76.1 (Z→E) ^f	75.7 (Z→E) ^f
	72.6 (E→Z) ^e	73.0 (E→2) ^f	76.0 (E→Z) ^f	75.9 (E→Z) ^f	75.8 (E→Z) ^f
b) k _T sec-1	0.69·10 ⁻³ (Z→E)	72.4 (Z→E)	1.68·10 ⁻³ (Z \rightarrow E)	8.65·10 ⁻⁴ (Z→E)	28.3 (Z→E)
	0.35·10 ⁻³ (E→Z)	53.3 (E→Z)	1.89·10 ⁻³ (E \rightarrow Z)	9.64·10 ⁻⁴ (E→Z)	29.6 (E→Z)
% E ^{b)}	66.4	58	47.1	47.3	49
	(C)	(B)	(C)	(C)	(B)
. T °C	-38 ^c (CDC1 ₃)	$(c_6H_5NO_2)$ (B)	-16° (CDC1 ₃)	-21 ^c (CDC1 ₃)	$^{+74.5}_{6}$ 49 ($^{6}_{6}$ $^{19}_{1}$ (B)
ž —	2e		1 2		<u> </u>

- a) Bei <u>2e</u> wird der E→Z-Prozeß, bei <u>2f</u> der Z→E-Prozeß durch Integration der S-CH₂- bzw. C-CH₂-Signale verfolgt.
- b) Gemessene (C) oder auf $T_c(vgl.$ Tabelle 1) extrapolierte (B) Gleichgewichtskonzentration. c) Temperatur der Äqui=

librierungskinetik(nach C). d)Temperatur, für die die k-Werte aus der Linienformanalyse (nach B) berechnet wurden.
e) Fehler ⁺ 1.0 kJ/mol. f) Fehler ⁺ 0.6 kJ/mol.

$$\underline{3}$$
, X = S $\Delta G_c^{\dagger} = 56.5 \pm 1.2 \text{ kJ/mol}$
 $(\Delta V_{CH_2} = 24 \text{ Hz}, T_c = -5^{\circ} \text{C, vgl.}^9)$
 $\underline{4}$, X = Se $\Delta G_c^{\dagger} = 54.2 \pm 1.2 \text{ kJ/mol}$
 $(\Delta V_{CH_2} = 21 \text{ Hz}, T_c = -16.5^{\circ} \text{C})$

 $\underline{3}$, $\underline{4}$: $R^3 = 2.4 - (NO_2)_2 C_6 H_3$

Schema 3

Literatur

- 1. F.A. Davis, J.M. Kaminski, E.W. Kluger und H.S. Freilich, J. Amer. Chem. Soc., 97, 7085(1975) dort weitere Literatur.
- R.F. Hudson, in "Organic Sulfur Chemistry", Hrsg. C. J. M. Stirling, Butterworth 1975,
 London, Boston, VI. Internat. Conference on Organic Sulfur Chemistry, Bangor/Wales U. K.
- 3. a)J.M. Lehn, Fortschr. Chem. Forsch., 15, 311(1970)
 - b)H.O. Kalinowski und H. Kessler, Topics Stereochem., 7, 295(1972)
 - c)H. Kessler, Angew. Chem. Int. Ed. Engl., 9, 219(1970)
 - d)A. Rauk, L. C. Allen und K. Mislow, Angew. Chem. Int. Ed. Engl., 9, 400(1970)
- 4. F.A. Davis und E.W. Kluger, J. Amer. Chem. Soc., 98, 302(1976)
- 5. a) W. Walter und C.O. Meese, Liebigs Ann. Chem., 1973, 832
 - b)C.O. Meese und W. Walter, Chem. Ber., im Druck -dort weitere Literatur
 - c)Alle dargestellten Verbindungen zeigen korrekte Analysen und Spektren. Über weitere Verbindungen, ihre Darstellung, Konfigurationszuordnung und inner= molekulare Beweglichkeit werden wir an anderer Stelle ausführlich berichten.
- 6. H.S. Gutowski und C.H. Holm, J. Chem. Phys., 25, 1228(1956)
- D. Kost, E. H. Carlson und M. Raban, Chem. Commun., 1971, 656 Korrektur von k durch die Gleichgewichtskonstante bei K ≠ 1.
- 8. T. Nakagawa, Bull. Chem. Soc. Jap., 39, 1006(1966)
- 9. F.A.L. Anet, R.D. Trepka und J.J. Cram, J. Amer. Chem. Soc., 89, 357(1967)